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ABSTRACT

An algorithm is described for minimizing a nonl inear function subjec t to
linear inequality constraints. The method generates a sequence (X

j
) with

x .  s - o . s . ,  where a and a . denote the search direction and the3+]. j j )  j 3
step size, respectively. Associated with each is an (n,n)-matrix

C~ — (c
1js....c j

) which is used to compute s~ as a suitable linear combina t ion
of C1j~~~• •  .,c~~. At each iteration the matrix C~ is up dated . The update
fornila depends on the constraints that are active at and x~~1. respec-
tively. Under appropriate assiaptions it is shown that — 1 for j

sufficiently large and that (x
i

) converges super Linearly to the opt imal
solution of the minimization pro blem.
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SIGNIFICANCE AND EXPLANATION

Linear prograsm~ing deals with the problem of minimizing

t .

subject to

Ax < b , x > 0 .

This has been spectacularly successful in certain classes of optimization

problems that occur , for example, in management . However most situations are

inherently nonlinear , and one would like to be able to dea l with the general

problem: minimize f (x ) , subject to g(x) < 0, x > 0. Progress in develop-

ing practical and efficient  methods for this full nonlinear problem is slow,

as one might expect due to its generality . The present paper deals with an

efficient computational method for solving the restricted problem: minimize

f(x) , subject to Ax < b , x > 0 , i.e. minimize a nonlinear objective func-

tion with linear inequality constraints.

The method depends on starting with a feasible solution x
0
, i.e., a

solution that satisfies the inequality constraints . Then produce a sequence

x
11x 2

,x
3
,... of feasible solutions by a variable metric method (see abstract).

Under suitable assumptions these will converge superlinearly to the optimal

solution.

The responsibility for the wording and views expressed in this descriptive
sumeary lies with NRC, and not with the author of this report.
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Klaus R it t . r

t - t r d u c t i o n

F. many years variable m.~- !r ~~z - methods have I ~~~ . f l  ly t~ ur ~ -’~r~it  r C i ? . ~-d

r~u i~im i Z atj on .  t~ 1 Gold! t r b  ~7J extend ed tt  Davjdon—F1etcht-r-i ,wt1~ metI~~d IS)

t •~ ~ ro~~Lems w f ~~h 1i~~,’a~ e l u ~~1I ’ , and i r ’ : 1u~t 1 i t y  ‘ r l 5 t r d L n t ~~. I n  ~~1 ~I11 a rId Md:ay

i bed var iable inc tr  ic methods fo r  1 inear 1 y ~n .  r ‘ m ed rct ,lems ‘.~ i h use ~ ~x ima—

ions the Hessian mat r ix  ~~ t f . t  ob jec tive  ion ra ther  than  t~ ‘ ! a  i:i.~~-:

Hessian m a t r i x .  In  a l l  cases it has only been shown tha t ~ method 1. . n~ine s

iinal solution i r ~ a f i ni t e  :j Iy ,r of s tq  s ~f th . -  ~ojec ive f u nc t L o n  is C(I ,V&-x  and

quadratic . ke en tly .  F i s : l e r ~4 )  proved su j e r l i nea r  ~~~~~~~~~~~~ of D avidon-Fle tcher—

Powell and the It r Oycf ~~r E l t t  her— Goldfarb—Sh anno f L I j  method for l i n e a r l y  c~~r~ - r a x ned

problems.

Brodlie , Gourlay  and t i s t ~~dt  (2 )  a rid more r . c e n t l y  Davidon 13) have inves t iga ted

variable met r i c  methods w h c r c  the m at r tx  which r ’x l m a t ” s  the inverse Hessian ~ the

objective fu - t ion  is f i t i i z e d . In t h i s  paper such a t i  ‘ i iz e d  v ar i a b l e  me t r ic

method for lineprly ~-o n s t r a in e d  problem s is g i v e n .  Us ing  F i s ch e r  ‘ s resu l t . 14 1 i t  is

shown tha t i t converges ~~~ er I ircarly. In the unconstrained case it redu es to a method

which was investigated in 1101 and shown f be a fa t i  i zed version of the i t y 1 . r. -

Fietcher-Goldfarb—Shanno method .

Sponsored by the United States Army under Contract No. DAAG29 -75-C-0024 .



2. General descri ption of the algori the

We consider the fol lowing •inia i.ation probl~~~ r N~ n imize  the fun c tion

F( x )

subject to the constraint.

Ax b

where x I E~ , b e and A is an (m,n ) -m at r ix .

Throughout the paper it is assumed that the set

P — {x IAx ‘ b)

of feasible solutions in nonwpty and that for every x I P the qradienta of the

constraints , active at x , are linearly independent. Fur t hermore, we assume that F(x)

is twice continuously differentiable and denot . the gradient and the Hessian ma t r ix  of

F(x)  at a point by - VP (x~ ) and — G (x~ ) .  respectively . In order to

prove superlin.ar convergence we f inally need the following

Assraption 1: There are positive numbers p , n and L such that

(2.1) uIIx II 2 
‘ x G (y)x ,~IxII 2 for all x .y  I

and

IIG(x ) — G(y) II < LIIx — ~II for all x , y  I

Assumption (2 .1 )  implies that P1*) is uniformly convex and that there Lu a unique

z e  P such that

F(s) < F Ix )  for all x I P

Let I P be a point d.teraineid by the algorithe. For ease of notation we

assume that

ajx j 
— (b)~~. I —

‘ (b)
1

, I — q + 1......

wher , a1, . . .  a ’ denote th. rows of A. S~ t

— (xla 1
x — 0, i —

and denote the orthogona l projection of onto T~ by t~~~. Then can be writt .n as

(2 .2 )  9 — + •

i—i

—2—
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•1
Because FIx) is convex it  follows fro. the Kuhn-I’ucker-c -r ditlQns (see s q .  181)

that x~ is an optima l solut ion if arId only if

q — 0 and 0 . i — 1 

Suppose x is not an optima l solution. Then we want to deter ~~ino a rie ar ~~L direc-

tion s~ and a step size -, ‘ 0 such tha t

(2.3) x~~~1 
— x~ — 0~~5~ I P ar Id FIx 3 ,1 ) ‘ F (x~)

In order to guarantee tha t th ,r .  exists an x .~~ wi th the properties (2.3) we

need a search direct ion s~ wi th

(2 . 4 )  q s  0 and a~ sj 
> 0 . i ~

If  
~ 

~ 0 we can f i n d  an s~ I T~ w i t h  q s ~ ~ 0. In  this case a s ~ • 0. i — I q.

and all constraints whic h are active at are also a t  ly e  at x
~~~~

. I f . say .  ~ 0

we can deter mine an s such tha t g ’s ‘ 0 , a s  0 and a ’s • 0 , i — l . . . .. q  - 1.j ) j  q j  i j
In this case the cons traint a x  (b ) is net active at xq —  q j el

I t  i~~ we l l—k nown tha t in order to prevent zig-;~a l r i r e l  t ! . . dec i s i,r .  to drop an

active constrai nt has to be made with some ~ut ion . Of ten  i t  is ba sed on a conparison

between ll~~tI and the ma x ima l value of the mul t ip l ie rs  1q ’ defi ned by ( 2 . 2 ) .

We sha ll adopt the policy to choose $ I T~ unle ss

(2 .5)  II~~II 
~ 

~~~ 5&X(A i~~
•~~•~~

A
q
)

H ere is a convergent sequen ce - .f posi t ive numbers wi th  the property that

lim y 4 — 0
j ~~

() ~‘

i f  and only if s
~ 

0 T~ for infini tely many j.

In order to compute 
~~~ 

A
q 

and an s~ with the properties (2.4) we

associate with each x ,  determi ned by the algorithm a nonsinqular (n, n) -matrix

C — (c , . .., cj  l j  n j

The column. cq.l ~ 
c j  are chosen in such a way that they form a basis of the

(n—q) -d i.sensional subspac . T~ . For i • l . .. . , q  the vector c1j is then uniquely

—3—
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I
determined by the equations

a c  — 0. k — 1 q. k * 1k i j

a c . - 1
i i )

• 0 , Ii — q • 1 , . . . , n

Because c , .. . ,c  - form a basis of T it  follows tha t the matrixn j  j

n
— zj  - I i i ji q+ l

is positive definite on the subepace T
1
. Furth.rsore.

H
1
x — 0 for every X I span (a

1 ag) .

Multiplying (2.2)  by Cj j  we have

A — c~ 1
g
1
. i — 1 q •

Thus

— — 

i~ l 
(c~ 1~~1

)a~

and (2.5) becomes

(2.6) — 

~ 

(c~~~)a~ll 
~
. 
~~ 

aix(c
1~ 9~ . i —

If (2.6) is not satisfied we choose

5j 
—

otherwis, we set

5 — c

where ~ cj ~9~ . i — l . ... ,q,  say. 

~ qj

With s
~ 

determined vs can define the maxima l step size as follows

- fb)j
— mm for all i with a~ s~ C 0 •

where we set o~ — — if a ’ s
1 

> 0 for all i. Pollowimq a method suggested by Powell 191

we conpu te a o~ such that

—4-
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F ( x  — a s ‘ F Ix ) - 6 ; ~~7 j j  — 3 1 ) 3 7

• 
.1 — ) ) s

w i t h  a — 1 i r  possible. ~~~~~ a r.1 are constants w i )  0 ‘ ~ ~ 1 and

~ ~.S. Final ly w. set

— m m • } arid x — x - i $

3 j  j  3 . 1  j  ) )

In r t . r  to complete a - y - - l & ’  of r ’  algor i thm we have to compute • ( .  
~~~~~~

- - - i ‘s~ on the r~~.! r ~. ~ i - t  ive  at x~ arid x r . ‘ ; . - -  vs I . r . - r  . r  t

i i f ~ - - r . - r t is i s be conside red .

:ase 1: s .  — H . q  and -i - , , i . e ..  the same c o n s t r ain t s  are ac t ive  ii  x arid *

~ 1 j•1

~~~ , r ef r.- • T — ‘I’ and w. - ~~ choose

— c ,  i — I. q

I n rd . r t -  ob ta in  sujerlinear convergence we determine a new i a s ~~’ 
,
~~ - . 3

• for T such f t i ’

0
H — I

• j+ l  i qel i .  34 1 r . .1

-
~~
ii ~s f i , - s  the p i a s i — N e w t r n  equation. i . e .,

H . d • p . ,
~~ l j  )

where

_~!i~_d
1 

= arid P1 
— I~~U

To this end compute

r .

W
j j  

— ~;( g  — g )  [cj j~~j +1 
— c~ 1

g
1 

1 — ~‘( l  — 

~~~~~ 

) a ~

arid set

( 2 . 7 )  ~~~~~~ — c
ii 

+ ~~~~~~~~ i — q + 1. . . .,  n

It can be shown (see (10 3 )  tha t then

H — H + 
d P
I 

+ d H
1
d

1 - 
P~d H

1 
+ H

1
d
1P~

j+l ~ (d;P1
) 2 ~i~1 a;p 1

—5—
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4
In the unconstrained case this is the Hroyden-Fletcher-Goldfarb-Shanno update !~~ rr .La

for H
3 

(see e.g. Ill )) . Clearly. H
1
d . — p .

It remains to be shown that the vectors defined by (2.7) define a basi. for T~.

Since $ I T we have C I I for i • q • 1 n and i t  suffices to show tha t
3 1 i , j + l  j

the c. 3+1 ’ 
m — q + 1 n. are linearly independent r equivalently that H~~1 

is

positive definite on ‘F. Let and q denote the orthogona l projection

arId g. ‘nto ‘F . respectively, and choose u I spsn(ã
1
.g
1

) such that 
~ 

• 0 and

o * 0 if  d and g are linearly independent. Since d P  — d~~- 0 ev .-r-, x I ‘F

can be written in the form

x . y . d + l u .

where (H
1
d
1
)y — (H q )y — 0. Observ ing tha t H

1
d

1 
- H

1
d

1 
and H q

1 
• N

1
q

1 
w’ have

x H
1~ 1

x ~~y’Hj
y + o2 1 p

1 
12u ’H

1
u 0 if x * 0

Case 2: s — c and a < a • i . e .,  th -! constraint a x  < (b) is not active at
j  qj  j  j  q —  q

x .  Thus

— ~X l 4~~JC —0 , A — 2 , . . . . q  — 1 -

Since c c form a basis of ‘F we can set
qj nj j+ q

— c~ 1
, i — q.q + 1 n

With

— 

~L C
1 ,1~~1

C
1

~~1

we have

— H
1
x for x e

because c
q1 

is orthogonal tO ~~~~~~~~ .,c,~1
. If we s•t

d c
— c

ii 
— 
C~j

Cqj 
C
qj ~ I — 1... .q — 1

then these vectors ar. orthogona l to Tj+1 end

a~c1 1 ~1 
— 0, I,k — l , . . . , q  — 1, i * k, a~

ck j+l 
— 1

_ _ _  - F



‘ 

case 3: s — H q and j  — ,‘, a new - -or~st i a i r t  Is -‘ - Civ.- ,‘ x • a be—— 7 3 )  3 7 ~.1 q.l

- -i radient t t h i s  new active constraint. Then

r
1 — { x~ i x — , i l..•.,q . 1,.

Sl n e we conside r H .  as an approx imation t~- the v v . - i ~~ .- Hessian Sa t r ix  of F(s) on

U~i- suk,space ‘F we want t - - determine  a basis - of ‘F su t, tha t) j +
~~~

. ~~ l n .  ‘.1

with

tI
i ,I

we have

H . x Ii x f r  x 1 ’
3 4 1  3 3 ’ !

This can L- done by using a tomes given in (13 which in -or notation is as fo1!ow~~.

Lemea 1: Let v - H .a and W - v a  - a where v I • l , . . . ,n ) .  If
~ q ’L q’t -3 9.3

- 0 set

c —~~~ • i — q . l  n. 1 *v .i , j ’ l t)

otherwise set, for i — q + 1 n, i V.

ci 1 + 1 - c
11 

— c;~ a 1,1 (1 
~~~~~~~~ v - tc~ j a

q41)

where

- 

+ (c~~a~~ 1
) 2

is a solution of the equation

wt2 +2c a t — 1 0.vj q+1

Then

1) a~~1
C~~1~1 

— 0, 1 • q + l , . . .. n, I # V

ii) s~an{v~c~1
. I — q + l....,n. ‘ * v) = sPsn{cq+i,j.....cnj

)

i i i )  cj j+ldh j+l 
— cj j d

k j . 
i,k — q + l,...,n, i * v, k * V

• where d
kj.

dk j+l 
I ~~~ such tha t H jdk J +l  

- C
k.i+l 

and ft jdk j  
—

— 7 —

- - I

r 
_______ _____ ____________________________



Clea r l y .  C , i — q • 1 .  ii. i - . forw a basIl for 
~~~~~ 

Fu r t I . - r r s  C ,

- 

~ 

c j ,,l cj ) , l d k .,l — 
k t ’ l •

i * ~ -

which implies U x — H x for x I T
J+ 1 j 7+ 1

To de f ine  the re a amnmnq coluans of let

aq41 — 

~q+l 
(r j~

aq,i ) a
i

Then a is the orthogonal pro)ection of a ont - ‘F and therefore -rthogona l to
q+l q i )

a1 ag. Since aq31 is also orthogonal to T1,1 each 1 the vectors

c
V i+1 

—
a aq+l qel

i, j4l — c
11 

— (a,~~1
c
11
)c

1~1
. 1 — 1 q

is orthogona l to Tj.i and has the property that

a
~

c
~~ j +i — 0, k * i , k — 1 q 4 1, a

k
c
k 7+1 

• 

~

Case 4: S — C and a — a , i.e., instead of the constraint a x  • (b) a new
qj j ) q —  q

constraint, say, a~~1
x ~ (b)q+1 is active at If all ~i 

— ~~. i.e.. if

is an extr mee point of R , set

c - 

Cq~j
q.~~+1 ~~+l

Cq j

— C~~ a1~~~~ 1 
Cqj ~ I — 1 n, I * q

If q n use the procedure of Case to add Cf ..- onstraint

~ (b)~~1 
to the set of active constraints. Denote the resulting matrix by

Than use the method of Case 2 with C
1 

replaced by to drop the constraint

~ (b) q~ The resulting matrix H
1~ 1 has the prop.rty

• H
141

x — H
1
x for x I (x~ a 1

x — 0, i — 1,... .g + 1) .

-B-

S 
-

~~ 
,

~~~~~~
- - -

~~~~~ 

——

~~~~~
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3. L)et - t  - L i t - - m er I t  of the a lg o r i t h

I t  is i - su i t . - ! that the a lgor i thm starts with an extreme point  x
~ 

of the fe asible

region R which - -in be obtained by solving a l i n e a r  m i n i m i z a t i o n  problem . Let

a x 0 — (b)~~. i — 1, ...,n

a x 0 ‘ 
( b ) . ,  i — n + 1.. . . ,

- 0. — (a a ) and C — D l 
- (C c 31 n 0 10 nO

then the matrix C0 has the properties described in the previous section. In addition

the m a t r i x  c we associate with each x
1
, generated by the algorithm , a set

J ( x ) — ( a1 11 Ii)

w~- -r, (O.i ,...,m}. If  — 0. then c
i1 

is orthogonal to the gradients of

all -ortstraints a- tjve at x
1
. If — k > 0 , then the constraint a~x < (b) k ~

active at * and ~~~~ — 1. Clearly

• — ‘ — 1 n

At the beginning of the j th cycle of the algorithm the fol lowing data is avai lable:

* C R, q . — VF(x.), positive constants y
1
. y, 6~ arid 6 2 with 6 1 6 2 ‘ 1 .

C 0.5, y < 1. Furthersore, the set J(x
1
) and the matrix C

1 
are given. The )‘.I

cycle of the algorithm consists of the following 3 steps.

Step 1: Computation of the search direction s
~ 

Compute c’
1
g
1 

for all i with

i > 0 and determine It - It such tha t
1 3  j

> c~ 1
g
1 

for all i with > 0

If

h g 1 (cj j 9j )a
a hI <

set

5
j 

— CI t j  and “j+l 
—

otherwise set

-9-

~

—S - - _ _ _  -



s = 
~ 

(c~ 1 ) -  and r — V .
~ —O ~) 1) 3 . 1  3

ii

If  5
j 

= 0, stopf otherwise go to Step 2.

Step 2: Compu tation of the step size a~ . If a~s > 0 for I — 1 , . ..,a set a; —

otherwise Set

0
* 

— min(  •
— (b)

1 1  f or a l l  i with e~~s1 
< o)

Determine a such that

F (x
1 

— a~s~) < F ( x . )  - 61o
1
g s .

and

(VF(x
1 

— a
l
s
j

) ) ’sj 
< 62g s~

with = 1 if possible. Set

a
1 

= min{o ,~~.)  and *1+1 — x
1 

— a~ s .

Coupute g 141 and go to Step 3.

Step 3: Compu tat ion of

Case 1: s . - ~ (c~ 1
g
1

)c~ 1 
and a < a~~, (no change inthe set of active constraints).

~

For all i with o~~. > 0 set

c~ , :3+1 — C~~1

For all i with a . .  • 0 compute

- 
5(9j 

q
1~ 13 [c~i~i+i 

- cii~ i(l 
-
~~~

(1 -

~nd set

0i , j +l — ~ij  
+ .a

11
s

1

Let

C11  
— (c

l j +l .....cn j +l
) .  J (x

1~ 1) J ( x
1

) ,

replace j  with j  + 1 and go to Step 1. 

-~~~~~~~~~~ -- -- ~~~ 
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Case 2: 5~ Ck •  and a . (d ropping an active - r i st r a int ) . Set

c = c for i — k e n d al l  t with a 0 .1 ,34 1 1) Ii

Ci4 C k 4c - = c — —
~

--—-- ‘
~ c for al l  I * It wi th  a > 011 C

It C
I t j  

kj ii

Set

C ,~~1 — (c~~ 7~ 1 c~~~~1) a i d  
~~~~~~ 

—

where

a , .  . for ~~= l  n , i * k1, 34 1 1)

C
~k ,j + l  — 0

Replace j  with j  + 1 and go to Step 1.

Case 3: s . ~ (c~~.~~~)c . arid a — a , (adding a new active constraint) . Let3 )  ~
1)

a 1 be the gradient of the new active cons traint. Selec t any v with a
1 

= 0 and
compute

— 

~ 

(c~ 1
a~ )c~ 1 

and — v a 1 
— (c

1
a1) 2

If ~ — 0 set

— c~1 
for all i * v with a

11 
— 0

otherwise

fl — tj c
~~

a
~ 1— c~1 

— c~ 1
a1~ v~a1 

v
1 

_ t
j C~ iJ

where

— -i_
{~Iw~ + c~ 1

a~~
2 

— c i
j at].

Compute

— a~ — 

a ,1~ >c’ 
(cj i a&

)a
a~

1

and set

— 11—

— LS 
~~~~~~~~~~~~~~~~~~~~~~~~ -_ ._ - 
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C
~~~~3 ., j 

=
a 1a 1

c . - - c — (c ’ a )c - t u i  all i with -• > 0
1 ,3+ 1 i~ ij I v ,)+l ii

Set

C — (c c - ) and J (x  ) — a -

~.t  1,3.1 n . ) + l  34 ! 1 , •1 fl , j 4 l

where

.1 - = -. . ,  fo r 1 1  0, 1 � V

~,j+ I 1 3

— I .
-
~~
, j + 1

Replace j  wi th j  + 1 and go to Step 1.

Case 4: S . = Ck• 
and a . — a ,,  (adding and dropping an active const r a in t ) .  If

cz . . > 0 , i 1  n set
13

Ck , j +1 atck .

C . - C .U C , i _ i  n ,  i * k .
1, 3+ 1 I) a Z ck j  kj

If at least one a~ 1 
— 0 use the procedure given in Case 3 to compute a new ma trix

Then use the method of Case 2 with C
1 

and S j replaced wi th C
1~ 1 and 1. respec-

t ive ly ,  to determine C
,~~1 

and J (x ~~ 1) .  Replace I with 3 + 1 and go to Step 1.

Remark:

I) In Step 1 we set ‘
~
‘j +l 

— < y~ whenever — C~~., i.e., whenever an active

constraint is dropped . Since in the convergence proof we only use the fact that ( y l

is a convergent sequence of positive numbers with

lim V — 0 iff s~ — ck 
for infinitely many

4 1 J I

any method which produces a sequence with these prop erties can be used .

i i)  The algorithm can easily be modified to ha ndle linear equality constraints.

Since equal ity constraints are always active the only difference is that a vector c11

L 

-12-
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corresponding to an equality constraint  is  n t  a candidat,  for  the search dire- tior . 5

in Step 1 of the algorithm. This could be indica ted by choceing ‘i) 
- -l for all i

such that c~1 
corresponds to an equality constraint .

-13-

______________________________________ - 

~~~~
J— 

-
—S



~~1

4. Super linear .~~!~!r ence

Ft rht we ~t-s -rv .- that for each X
) 

and X
j+l 

generated by the S l g o ri tlm wi have

* ,  * 1 C R and F(* 1
) < F (x). Further-more , the algorithm terminates with an x

i f  and only if x~ sat i - . f i , - s  the Kuhn-Tucker cond it i l l n s  and is there fore  an optima l

solution .

We assume now that the algorithm generates an infinit - - sequence (x
~~

} and sha l l

prove t ha t , under  the assumpt ion stated in Section 2, t h i s  sequence converges supe r--

l i n e a r l y  to the optima l solution z. The convergence proof is closely related to CL.-

proo f g iven by Fischer 14 1 .

Leasna 2: There ii 
~0 

and i C U m } such that, for j  
~~

aiX . — (b).. i e I

a x
1 ~ (b I . .  I f I

Proof : For every j let I~ C (1 m } be such tha t i C 1 . if and only if

a x  - — (b) - . Furthermore, let J C {0,l, . .. } be such that an active constraint is
1 )  1

dropped at x . if arid only i f  j  e J.

Suppose that the leSsna is not true . The n J is an infinite set and

— (I C {i ,...,m }h I — i. for in f in i t e ly  many j  1 J}

is non-empty. Choose any I I 0 which has the maxima l number of elements of all I C

Set

— {j i ~Ii1 — I )

There is It C i and an infinite subset C such that for each ‘

always the constraint a~x < (b)k 
is dropped from the set of active constraints. Since

* 0 as i • — it follows from Step 1 of the algorithm tha t .0 as j •

j I where denotes the orthogonal projection of g. onto

‘F — {x I a ~ x — 0, 1 I I)

By the uniform convexity of ?(x) this implies

-. x as I ~ — , j I

- -  5 ~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~



•1~

where x I R is the unique solution of

m i n ( F ( x )  I a ~ x — (b) . i I

Let

(4.1) VF (c) — 1. a , and — max{A , i e I )  -
il l  1

First suppose that A < 0. By Taylor ’s theorem there are numbers 0 
~ 

f~~. n1 ~ 
1

Such that for , j ~

c~~.g
1 

— c
~~. VF(

~~
) + ck i G ( x  + ~1

(x . — x)) (x , - x)

~ ILk) 11 11 Cdx + (x  — x )) II II x j  
— 11 ~. 

nh lc Itlil l x i — x lh
and

(x
1 

— x ) ’ g .  — (x
1 

— x ) ’V F (~~) + (x . — c ) G ( x  + n.(x
1 

— x)) (x
1 

— x) > uhlx 3 — x11 2

Thus Cx . - x ) ’ g ,  — (x
1 

- x ) ’ g
1 

implies Ih ’~ h h~. -illx1— ~~ arid we have

hI
~j lI 

~~

. 

~ 
c~1

g. for j

Since V . ‘ 0 as ~ -
~ we obtai n the contradiction that for ~ 

~~ 
su f l c l ent ly

large no active constraint is dropped .

To complete the proof it suffices, therefore, to show that A < 0. Suppose A > 0.

Since

c~~1
g
1 

— max(c~1~ 1
la~~. > 0) + A as 

~ 
-~ . ~ 

I

and s . — c for j I -3 , it follows that) kj  2

g;s 1 
> c h I s 1hl for j  1 

2 
and some r > 0

Since F ( x)  is bounded from below Step 2 of the algorithm implies that

a
; 

-. 0 as :3 + — , :3 I

and

— a~ for infinitely many j I

Thus there is 1 1 (1 in) - I and an infinite subset 3
3 
C 

2 such that the constraint

a~x < (b )
1 is active at x

1~ 1. j 
I -33. Yurthermore a~ x — (b) 1 since

it x 1~ 1 
— z~ Ij -. 0 as j + — ‘ j I J3

.

—15—
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7- i .7 1 ‘ ~ 0 1-. thi iC  i. -t i I t ,~ 4’r bti 7. th.i t - ,  a • x
3 3 — 3 . 7  ).t 

-

the - -aiC~* - o f i st i  ain t s  . t r ’ -  a ( t l v C - . S i n  ~. t . . 7 ,  7 . : i t i u is  ~t I impi tea - ~ f ..~ L.ut

at rn -st f i t - l y  many X ),r 
- t r ~~~ i C I v . -  ~~r , f i i ~ ’ r a i l , ? is 1 1 - 7  ~~--i it f~~I l.a.. - i- i . .

~— t t - 7 1 ‘7 the . 1 - i t i thin tha t

X x a 3 • — , 7 C

I

where x is the uni qu  ~(1II t 1 ,’t l  Of

(-7 .2) mxnlF (x ) a • X — ( I I , i I — (k~ (I))

I — I — (ki  4 (~~~ and

(4.3) VF( x )  — 
a 

r a .

if I

Because x ~s ~. f ea s ib l e  solution of problem ( 4 . 2 )  and F ( x )  and F(x ) are

both lust tr points of the monot~one decreasing sequence ( F ( x . ) )  it follows that

F ( x )  — F ( x  ) and x — a . Subtracting ( 4 . 3 )  from ( 4 . 2 )  we have therefore

which by the l inear  independence of gradients of active constraints gives the contradic-

tion that  A = k

Theorem : Let Assumptior~ 1 be satisfied . The sequence t x .) converges superlirivarly

to the opt imal  s~~1ution of the problem

n i n {F ( x )  Ax ~ b }

For s u f f i c i e n t l y  large O
j 

— 1.

Proof: Let and I be defined as in Lessee 2. For j > j~ the application of ~~e

algorithm to the given problem is equivalent to its application to the problem

(4 .4 )  a i i n {F ( x ) I a ~x — (b)1. 
I I I)

Therefore, i t  follows from Theorem 2. 1 in ( 4 )  that — 1 for j  s u f f i c i e n t ly  large

and that (a
1
] converges superlinearly to th. optima l solution a of (4.4). Let

V F(z)  — ~ A~ a
ill

-16-
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and 1.: denote the orthogonal projection of onto (ale x — 0, II I ) .  Since

for sosie ~I’ 
> o , hl g

1
h I + o  as j - ’ — and

c~1
g
1 

-. A — max {A
1
, i I I )  as j - —

it follow, from 1h ,ih > y
1
c~~1

g
1 

for I 
~~ 

I
~~

. that A < 0. Sinc, a i R, it is the

optima l solution of the given problem.

—17—
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